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INTRODUCTION

Particle transport through binary stochastic mixtures
has received considerable research attention in the last two
decades [1]. Zimmerman and Adams [2] proposed a Monte
Carlo algorithm (Algorithm A) that solves the Levermore-
Pomraning equations [1] and another Monte Carlo algo-
rithm (Algorithm B) that should be more accurate as a re-
sult of improved local material realization modeling. Zim-
merman and Adams [2] numerically confirmed these as-
pects of the Monte Carlo algorithms by comparing the
reflection and transmission values computed using these
algorithms to a standard suite of planar geometry binary
stochastic mixture benchmark transport solutions [3]. The
benchmark transport problems are driven by an isotropic
angular flux incident on one boundary of a binary Marko-
vian statistical planar geometry medium.

In a recent paper [4], we extended the benchmark
comparisons of these Monte Carlo algorithms to include
the scalar flux distributions produced. This comparison
is important, because as demonstrated in Ref. [5], an
approximate model that gives accurate reflection and trans-
mission probabilities can produce unphysical scalar flux
distributions. Brantley and Palmer [6] recently investigated
the accuracy of the Levermore-Pomraning model using a
new interior source binary stochastic medium benchmark
problem suite. In this paper, we further investigate the
accuracy of the Monte Carlo algorithms proposed by
Zimmerman and Adams by comparing to the benchmark
results from the interior source binary stochastic medium
benchmark suite [6], including scalar flux distributions.
Because the interior source scalar flux distributions are
of an inherently different character than the distributions
obtained for the incident angular flux benchmark problems,
the present benchmark comparison extends the domain of
problems for which the accuracy of these Monte Carlo
algorithms has been investigated.

BENCHMARK TRANSPORT PROBLEMS

We consider the following time-independent monoen-
ergetic neutron transport problem with isotropic scattering
in a one-dimensional planar geometry spatial domain de-
fined on 0 ≤ x ≤ L:

µ
∂

∂x
ψ (x, µ) + σt (x)ψ (x, µ) =

1
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σs (x)
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ψ (x, µ′) dµ′ +
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q (x) ,

0 ≤ x ≤ L , −1 ≤ µ ≤ 1 , (1a)

q (x) =
1
L
, 0 ≤ x ≤ L , (1b)

ψ (0, µ) = 0 , µ > 0 , (1c)

ψ (L, µ) = 0 , µ < 0 . (1d)

Eqs. (1) are written in standard neutronics notation [7].
The interior source defined by Eq. (1b) is non-stochastic,
spatially uniform, and results in one neutron sourced into
the medium per unit time. The vacuum boundary condi-
tions given by Eqs. (1c) and (1d) are non-stochastic. The
stochastic spatial medium is assumed to be composed of al-
ternating slabs of two materials, labeled with the indices 0
and 1, with the mean material slab width for material i de-
noted as Λi. The total and scattering cross sections for each
material are uniform and are denoted as σi

t and σi
s, i = 0, 1,

respectively. The distribution of material slab widths in the
planar medium is assumed to be described by spatially ho-
mogeneous Markovian statistics [1].

The material parameters for the benchmark transport
problems are given in Table I using the notation of Ref. [5].
The scattering ratio for material i is defined as ci = σi

s/σ
i
t.

For each set of material parameters (cases 1, 2, and 3), three
sets of scattering ratio combinations (cases a, b, and c) and
three slab widths (L = 0.1, 1.0, and 10.0) are considered.
The ensemble-averaged total cross section is unity for all
cases. The different case numbers (i.e. 1, 2, and 3) rep-
resent permutations of materials with mean material slab
widths of optical depth 0.1, 1.0, and 10.0. The different
case letters (i.e. a, b, and c) represent varying amounts of
scattering for each material.

One fiducial comparison quantity is the ensemble-
averaged leakage from the slab at x = 0, 〈J0〉, defined as

〈J0〉 =
∫ 0

−1

|µ| 〈ψ (0, µ)〉 dµ . (2)

(In the limit of an infinite number of realizations, the
leakage at the left and right boundaries of the slab should
be identical. Given the finite number of realizations used
in the generation of our benchmark results, we choose
to simply compare the leakage from the slab at x = 0,
〈J0〉.) In addition, we compare the ensemble-averaged
material scalar flux distributions, 〈φi (x)〉, i = 0, 1, as these
distributions determine reaction rates in the system.



Table I. Material Parameters for Benchmark Transport Problems
Case σ0

t Λ0 σ1
t Λ1 Case c0 c1 L

1 10/99 99/100 100/11 11/100 a 0.0 1.0 0.1
2 10/99 99/10 100/11 11/10 b 1.0 0.0 1.0
3 2/101 101/20 200/101 101/20 c 0.9 0.9 10.0

MONTE CARLO ALGORITHMS

For both Algorithms A and B, a particle history begins
with sampling the source particle characteristics including
a material identifier for the particle. Distances to the
required events are then either sampled or computed. The
distance to collision, dc, is sampled using the macroscopic
total cross section corresponding to the material in which
the particle exists. Because we are interested in comparing
the material scalar flux distributions, we impose a uniform
spatial mesh on the spatial domain in which to tally this
information using a track length estimator [7]. As a result,
we introduce a new distance calculation, the distance to
zone boundary, db, computed using the current position
and direction of flight of the particle and the boundaries
of the spatial zone in which the particle exists. For both
Monte Carlo algorithms, the distance the particle travels
in the zone is tallied whenever the particle is moved. In
the next sections, we describe in more detail the particle
history flow for Algorithms A and B.

Algorithm A: The Levermore-Pomraning Solution

For each particle history:

1. Compute db and sample dc as described above.

2. Sample the distance to material interface, di, by sam-
pling a material slab width from Markovian statistics
and dividing by the particle direction cosine to ac-
count for the direction of particle motion.

3. Compute the minimum of db, dc, and di to determine
the sampled event.

4. If db is the minimum distance, move the particle to the
zone boundary. If the particle is escaping the spatial
domain, update the appropriate leakage tally, termi-
nate the history, and track the next particle. Otherwise,
return to step 1.

5. If dc is the minimum distance, move the particle the
appropriate distance, and sample the collision type us-
ing the macroscopic total and scattering cross sections
for the material in which the particle exists. If the
sampled collision is absorption, terminate the history
and track the next particle. If the sampled collision
is scattering, perform the scattering collision by sam-
pling the outgoing characteristics of the scattered par-
ticle; the particle maintains its current material identi-
fier. Return to step 1.

6. If di is the minimum distance, move the particle the
appropriate distance and switch the material identifier.
Return to step 1.

Note that following a collision, a new distance to
material interface is sampled. As a result, the particle
encounters a different material realization following a
collision, which is unphysical. As noted by Zimmerman
and Adams [2], this algorithm is exact in a purely absorb-
ing medium. We expect Algorithm A to be less accurate
in highly scattering materials with optically thick mean
material slab widths. Because we have imposed a spatial
mesh on the problem, a new distance to material interface
is also sampled following a zone boundary crossing. Since
Algorithm A models a Markovian (i.e. a no-memory)
transport process involving uncorrelated particle flights,
sampling a new distance to material interface following a
zone boundary crossing does not introduce additional error
into the algorithm.

Algorithm B: A More Accurate Solution

For each particle history:

1. Sample the distance to material interface values in the
forward and backward directions of particle motion,
d+

i and d−i , respectively, as described in Algorithm A.

2. Compute db and sample dc as described above.

3. Compute the minimum of db, dc, and d+
i to determine

the sampled event.

4. If db is the minimum distance, initially treat as in Al-
gorithm A. In addition, adjust the distance to mate-
rial interface values in the forward and backward di-
rections to account for the distance the particle was
moved. Return to step 2.

5. If dc is the minimum distance, initially treat as in Al-
gorithm A. In addition, adjust the distance to mate-
rial interface values in the forward and backward di-
rections to account for the distance the particle was
moved. If the sampled collision is scattering, also
adjust the distance to material interface values in the
forward and backward directions to account for the
change in direction of flight of the particle after the
scatter. Switch the forward and backward distance
to material interface values if the particle is backscat-
tered. Return to step 2.



6. If d+
i is the minimum distance, move the particle

the appropriate distance, switch the material identifier,
sample a new d+

i , and set d−i to zero. Return to step 2.

In Algorithm B, a particle can move within one
material and encounter the same realization, which is more
physically realistic than Algorithm A. As a result, we
expect Algorithm B to be more accurate than Algorithm A.

NUMERICAL RESULTS

We computed Monte Carlo solutions for the interior
source benchmark problem suite using both Algorithms A
and B. We tallied the Monte Carlo scalar flux distributions
using 100 uniform spatial zones. Each Monte Carlo simu-
lation was performed using 109 particle histories, resulting
in pointwise relative standard deviations for the material
scalar flux distributions of less than 0.1% in all cases. We
focus here on the L = 10 slab width results, as the largest
errors occur for this slab width.

Table II presents for each of the nine mate-
rial/scattering ratio cases the relative error in the com-
puted leakage and the root-mean-squared relative error in
the computed ensemble-averaged scalar flux distributions
compared to the benchmark results [6]. Overall, we find
that Algorithm B generally produces significantly more
accurate leakage values than Algorithm A and also sig-
nificantly more accurate material scalar flux distributions.
Both Monte Carlo transport algorithms robustly produce
physically-realistic scalar flux distributions for the trans-
port problems examined. These conclusions are gener-
ally consistent with results from the incident angular flux
benchmark suite [2, 4].

The largest error in the scalar flux distributions occurs
in case 2a. The material zero scalar flux computed by
Algorithm A for this case is reasonably accurate (RMS
relative error of 2.5%), while the material one scalar flux
distribution exhibits large pointwise errors (RMS relative
error of 61.9%). For this case, materials zero and one have
mean material slab widths of one and ten, respectively.
Material one is purely scattering and optically thick,
conditions under which the Levermore-Pomraning model
(Algorithm A) is known to be only approximate. Material
zero is purely absorbing, and hence Algorithm A should be
generally accurate in this material. Algorithm B produces
significantly more accurate scalar flux distributions for this
case.

CONCLUSIONS

We have numerically investigated the accuracy of two
Monte Carlo algorithms originally proposed by Zimmer-
man and Adams [2] for particle transport through a bi-
nary stochastic mixture using an interior source planar ge-
ometry benchmark suite [6]. Both Algorithms A and B
produce qualitatively and semi-quantitatively correct re-
sults for the leakage values and the scalar flux distributions

Table II. Summary of Numerical Results for L = 10
(RMS) Relative Error

Case Case Quantity Algorithm A Algorithm B
〈J0〉 0.085 0.054

a 〈φ0〉 0.047 0.031
〈φ1〉 0.108 0.082
〈J0〉 -0.052 -0.012

1 b 〈φ0〉 0.064 0.009
〈φ1〉 0.012 0.004
〈J0〉 -0.012 -0.004

c 〈φ0〉 0.149 0.086
〈φ1〉 0.043 0.040
〈J0〉 0.024 0.015

a 〈φ0〉 0.025 0.013
〈φ1〉 0.619 0.073
〈J0〉 -0.085 -0.001

2 b 〈φ0〉 0.082 0.002
〈φ1〉 0.137 0.008
〈J0〉 -0.094 -0.004

c 〈φ0〉 0.145 0.018
〈φ1〉 0.314 0.039
〈J0〉 -0.005 0.010

a 〈φ0〉 0.101 0.078
〈φ1〉 0.432 0.108
〈J0〉 -0.030 -0.002

3 b 〈φ0〉 0.018 0.016
〈φ1〉 0.012 0.004
〈J0〉 -0.062 0.000

c 〈φ0〉 0.146 0.037
〈φ1〉 0.063 0.023

for this interior source benchmark suite. Overall, we find
that Algorithm B is significantly more accurate than Al-
gorithm A. These conclusions are consistent with the re-
sults of previous research [2, 4] investigating the accuracy
of these Monte Carlo algorithms using an incident angular
flux benchmark suite.

The material parameters used in the benchmark suite
examined in this work are the same as used in previous
incident angular flux benchmark suite investigations [2–5].
For some mean material slab width and total slab width
values used in the benchmark suite, a small number of
distinct material slabs are present in typical realizations
(although some realizations have significantly larger
numbers). Examining additional ranges of material param-
eters and larger slab widths may be beneficial in further
assessing the relative accuracy of Algorithms A and B.
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